Indian Statistical Institute M.Math II Year Second Semester Examination, 2004-2005 Stochastic Processes-II Date:12-05-05 Max. Marks : 100

Time: 3 hrs

1. a) Suppose $X = \{X_n, -\infty < n < \infty\}$ and $Y = \{Y_n, -\infty < n < \infty\}$ are mean zero, stationary L^2 -processes with $X_n = \sum_{j=-\infty}^{\infty} a_j Y_{n-j}$, the series converging in L^2 . Let μ_X and μ_Y be the spectral measures of X and Y respectively on $[-\pi, \pi]$. If $\phi(\lambda) = \sum_{j=-\infty}^{\infty} a_j e^{-i\lambda j} \lambda \in [-\pi, \pi]$ converges in $L^2(\mu_Y)$, show that

$$\mu_X(E) = \int_E |\phi(\lambda)|^2 d\mu_Y(\lambda).$$
[10]

b) Conversely, suppose that $X = \{X_n, -\infty < n < \infty\}$ is a mean zero, stationary L^2 -process whose spectral measure μ_X is given as

$$\mu_X(E) = \int_E |\phi(\lambda)|^2 d\mu(\lambda)$$

for some finite measure μ on $[-\pi, \pi]$ and $\phi \in L^2(\mu)$.

Suppose further that $\phi(\lambda) = \sum_{j=-\infty}^{\infty} a_j e^{-i\lambda j}$ for some complex numbers a_j and the series converges in $L^2(\mu)$. If $|\phi(\lambda)| > 0$ a.e. μ , show that there exists a stationary, mean zero, L^2 -process $\{Y_n, -\infty < n < \infty\}$ with spectral measure μ such that $X_n = \sum_{j=-\infty}^{\infty} a_j Y_{n-j}$. [10]

2. For each $n \ge 1$, let $\{W_n(t), t \in \mathbb{R}\}$ be a sequence of mean zero, stationary L^2 -process with spectral density given by $f_n(\lambda) = I_{[-n,n]}(\lambda)$. For $g \in L^2(m)$, m being Lebesgue measure, let $W_n(g) = \int_{\mathbb{R}} g(t) W_n(t) dm(t)$.

a) For each $g \in L^2(m)$, show that there exists an L^2 -random variable W(g) such that $\lim_{n \to \infty} W_n(g) = W(g)$ in L^2 . Show that W(g) satisfies

$$E(W(g)\overline{W(h)}) = 2\pi \int_{-\infty}^{\infty} g(t)\overline{h(t)}dm(t).$$
[10]

b) Show that there exists a process with orthogonal increments $\{Z(\lambda), -\infty < \lambda < \infty\}$ such that $\int_{\mathcal{B}} g(\lambda) dZ(\lambda) = W(g)$ for all $g \in L^2(m)$.

3. Let (B_t) be a *d*-dimensional standard BM. Let P_x be the law of $(B_t + x)_{t\geq 0}$ on $(C[0,\infty), \mathcal{C})$. Let $\mathcal{F}_s = \sigma\{B_t, t \leq s\}$. Let $B_{s+.}$: $\Omega \to C[0,\infty)$ be the map $\omega \to (B_{s+t}(\omega))_{t\geq 0}$. Show that the regular conditional distribution of $B_{s+.}$ given \mathcal{F}_s is given by the map $(\omega, A) \to P_{B_s(\omega)}(A)$.

[10]

4. Let (B_t) be a standard one dimensional BM and $M_t = \sup_{s \le t} B_s$. Show that the joint density of (B_t, M_t) is given by

$$f(x,z) = \begin{cases} 0 & x > z \text{ or } z < 0\\ \sqrt{\frac{2}{\pi} \frac{2z-x}{t^{3/2}}} e^{-\frac{(2z-x)^2}{2t}} & z \ge 0 \text{ and } x \le z \end{cases}$$

Hint: Compute $P\{B_t < z - y, M_t \ge z\}$ for $z \ge 0, y \ge 0$. [10]

- 5. Let (B_t) be a standard one dimensional BM. Show that for any $b \in \mathbb{R}$, the random set $\{t : B_t = b\}$ is a closed, unbounded, perfect set of Lebesgue measure zero. [15]
- 6. Let (B_t) be a standard one dimensional BM and for b > 0 let τ_b be the first passage time for b. Let $Y_t = B_{t \wedge \tau_b}$. Show that $(Y_t)_{t \geq 0}$ is a Markov process, starting from zero with the transition function $K_2(t, x, \cdot)$ defined as follows:

$$K_2(t, x, \cdot) = \delta_x(\cdot)$$
 if $t = 0$ or $t > 0$ and $x \ge b$.

If x < b and $A \subseteq (-\infty, b)$ and t > 0, then

$$K_2(t, x, A) = \int_A \frac{1}{\sqrt{2\pi t}} \left\{ e^{-\frac{(x-y)^2}{2t}} - e^{-\frac{(2b-x-y)^2}{2t}} \right\} dy.$$

and $K_2(t, x, \{b\}) = P\{M_t \ge b - x\}.$ [15]

7. Let $\{\zeta_j\}_{j=1}^{\infty}$ be a sequence of independent and identically distributed r.v's on $(\Omega, \mathcal{F}, \mathcal{P})$. Let $S_0 = 0$, $S_k = \sum_{j=1}^k \zeta_j$, $k \ge 1$. Let

$$\begin{array}{rcl} Y_t &=& S_{[t]} + (t - [t])\zeta_{[t]+1} & t \geq 0 \\ X_t^n &=& \frac{1}{\sigma\sqrt{n}}Y_{nt} & t \geq 0 \end{array}$$

a) Show that for every $\epsilon > 0, T > 0,$

$$\lim_{\delta \downarrow 0} \sup_{n \ge 1} P \left\{ \max_{\substack{|s-t| \le \delta\\ 0 \le s, t \le T}} |X_s^n - X_t^n| > \epsilon \right\} = 0$$

[You may state, without proof appropriate results about the S_k 's that you need]. [9]

b) Show that for $0 \leq t, < \ldots < t_k$, the random vector $(X_{t_1}^n, \ldots X_{t_k}^n)$ converges in distribution to $(B_{t_1}, \ldots B_{t_k})$, where $(B_t)_{t\geq 0}$ is a standard one dimensional Brownian motion. [9]

c) Let P_n be the law of $(X_t^n)_{t\geq 0}$ on $(C[0,\infty),\mathcal{C})$. Deduce from a) and b) that $\{P_n\}$ converges weakly to the Weiner measure. [7]